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Abstract

Atomic scale surface structure plays an important role in describing many properties
of materials, especially in the case of nanomaterials. One of the most effective techniques
for surface structure determination is low-energy electron diffraction (LEED), which can be
used in conjunction with optimization to fit simulated LEED intensities to experimental
data. This optimization problem has a number of characteristics that make it challenging:
it has many local minima, the optimization variables can be either continuous or categorical,
the objective function can be discontinuous, there are no exact analytic derivatives (and no
derivatives at all for categorical variables), and function evaluations are expensive. In this
study, we show how to apply a particular class of optimization methods known as pattern
search methods to address these challenges. These methods do not explicitly use derivatives,
and are particularly appropriate when categorical variables are present, an important feature
that has not been addressed in previous LEED studies. We have found that pattern search
methods can produce excellent results, compared to previously used methods, both in terms
of performance and locating optimal results.
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1 Introduction

The surface structure determination of nanostructures is important because many of their prop-
erties (e.g., mechanical, electrical, magnetic, chemical and optical) depend to some extent on the
atomic-scale structure of the surface. For example, a surface formed by adding lithium to the
surface of a nickel crystal can be used as a catalyst. The key to understanding and controlling
the catalytic activity however is to have exact knowledge about how these two types of atoms
(Li and Ni) occupy the surface. By surface structure here, we mean the geometric positions of
the atoms within the several atomic layers (or a nanometer-scale distance) from the surface and
the chemical identities of these atoms. As a result of the surface reconstruction, these atoms
could occupy any geometric positions within several atomic layers from the surface.

Among the various methods [1, 2] of determining the surface structure, one of the principal
techniques is the low energy electron diffraction (LEED) method [3, 4, 5] which combines ex-
perimental and theoretical analysis. This is mainly due to the fact that the LEED experiment
is inexpensive compared to most other techniques, while still providing high precision for the
determination of the full surface structure. In fact, some methods are only able to determine a
subset of the surface structure. In a LEED experiment, an electron beam is emitted from an
electron gun (usually with an energy of 20eV–600eV) and hits the surface of the test sample.
By recording the reflected beams (see Fig. 1), one can obtain the electron diffraction pattern,
which includes enough information to be used to accurately determine the surface structure.
Given a trial surface structure, one can also compute a LEED pattern by calculating the mul-
tiple scattering of the incoming electron beam due to these surface atoms. By comparing the
simulated LEED pattern with the experimental data, one can iterate until a surface structure
is determined that matches the experimental diffraction patterns.

The LEED method can therefore be formulated as an inverse optimization problem subject to
some constraints. In this problem, the optimization problem contains two types of parameters:
continuous and categorical and the objective function to be minimized is the misfit between the
calculation and the experiment. The continuous variables correspond to the atomic positions
and the categorical variables correspond to the chemical identities of the atoms. By a categorical
variable we mean one that must be chosen from among two or more categories, but where there
is no intrinsic ordering to the categories. The major distinction between these and discrete
variables is that the lack of an intrinsic ordering precludes us from using standard mixed integer
programming methods. These types of optimization problems are known as mixed variable
problems because of the two types of parameters that need to be considered. The inverse problem
has a number of characteristics that make it challenging however: the objective function is not
smooth (due to the presence of the categorical variables and invalid points in the parameter space,
and also due to the numerical effects on a fine scale), there exist many local minima, derivative
information is difficult to get or unavailable, and the function evaluations are expensive.

A number of approaches to automated searches for the globally best solution have been ex-
plored and applied over the years using LEED, including: simulated annealing [6], fast simulated
annealing [7, 8, 9, 10], and a modified random sampling algorithm [11]. These methods, which
allow global optimization, were, however, limited to relatively simple problems in quite restricted
search domains. In particular, no element identification is normally attempted, avoiding the fit-
ting of categorical variables. As implemented, these methods tend to be very compute-intensive,
requiring the evaluation of large numbers of trial solutions.

The most relevant previous attempts [12, 13] to solve this mixed variable optimization prob-
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lem used genetic algorithms (GAs) which simulate the natural evolution of living organisms. In
this algorithm, each candidate solution, which is denoted by a chromosome, is assigned a “fit-
ness” value. Chromosomes with a lower function value are assigned a higher fitness value. The
algorithm starts with a population of random chromosomes and applies a selection rule, which
combines chance and a preference for the chromosomes with high fitness values, to choose pairs
of chromosomes to be used as parents for the next generation. The parents are then used to
produce the next generation of chromosomes (children) following certain crossover and mutation
rules. The hope is that, following the analogy of survival of the fittest, the better parents will
produce better children. The population is then updated by adding the children to the popula-
tion. There are many different ways to update the population; children may simply replace the
parents or allow parents to compete with their children so that only those chromosomes with
higher fitness values are kept in the population. This process can be repeated until a chromo-
some with a satisfactorally high fitness value is found. For more details about GAs, we refer
to [14, 15, 16].

Döll and Van Hove first applied GAs to the determination of a Ir(110)-(1x2) missing row
surface structure [12]. Since the test problem had a rather small parameter space (1Å×1Å×1Å),
they were able to perform an exhaustive grid search (on a grid of 0.05Å fineness). They found
that GAs could locate the global minimum 10 times faster than an exhaustive grid search, and
performed better than simulated annealing [6]. They therefore concluded that GAs could be used
as a global optimizer for the LEED surface structure determination [12]. Later, Stone applied
GAs to the complex surface Ni(001)-(5x5)-Li [17]. This surface is formed by adding lithium
atoms to a nickel crystal surface. Because the parameter space volume is around 12.5Å ×
12.5Å × 5Å, an exhaustive search is not viable. However using a parallel GA package that he
developed, he showed that GAs are able to find the best known solution for this structure, if the
atoms are allowed a small relaxation (±0.4Å) from the best known solution. In addition, the
categorical variables were restricted to the best known value; otherwise GAs would generate a
large number of invalid structures, i.e., physically unacceptable solutions [13].

Our present work continues the effort to find a global optimizer for the LEED surface struc-
ture determination problem. We have adapted and applied pattern search methods to solve this
optimization problem and we were able to verify that pattern search methods have better perfor-
mance than GAs. They generate significantly fewer invalid structures, and they are able to find
the best known solution several times faster than GAs under the same local relaxations. The
new methods can also find the best known solution and even improved solutions under complete
relaxation of the atoms. Finally, the new methods allow for the simultaneous search over the
whole parameter space (continuous variables and categorical variables), which is essential for a
method to be used as a global optimizer in the LEED surface structure determination problem.
Our numerical experiments also show that pattern search methods are robust.

Pattern search methods have been widely used in many applications. One version, the Hooke
and Jeeves (HJ) search algorithm [18] was used to solve the LEED surface structure problem
for CdTe(110) [19, 20]. However, this approach required an initial search that used heuristics
to find good initial points near some promising local minima before running HJ algorithm,
where it was used as a local optimizer for the continuous variables. Since then, there have
been many improvements, both theoretically and algorithmically, to the class of pattern search
methods. In particular, methods for handling constraints and categorical variables have been
developed. These new developments allow us to apply them to the global LEED surface structure
determination problem. We will review these methods in more detail in Section 2.
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The remaining sections of the paper are organized as follows. In Section 2 we review the pat-
tern search method, with particular attention to its convergence properties. Section 3 describes
how to apply pattern search methods to the LEED surface structure problem. In Section 4 we
present our numerical results on one test problem, the complex surface structure determination
of Ni-(5x5)-Li, and compare our results with those of genetic algorithms. In Section 5 we give
concluding remarks.

2 Pattern Search Methods

Pattern search methods belong to a class of optimization methods known as direct search meth-
ods. These methods have a long and rich history in the scientific and engineering communities
where they have been applied to numerous problems. An excellent introduction and survey of
these methods can be found in [21], which also contains numerous references. The main at-
traction of direct search methods is their ability to find optimal solutions without the need for
computing derivatives in contrast to the more familiar gradient-based methods. This feature is
particularly attractive in situations where the objective function is a result of a simulation code.

The basic ideas behind these methods can be demonstrated through one of the early pattern
search methods known as compass search. The algorithm can be summarized as follows: from
the current point, we try steps in each of the four compass directions, East, West, North, and
South. If one of these four steps yields a reduction in the function, the improved point becomes
the new iterate; if none of these steps yields an improvement, we try again with steps that are
half as large.

Fig. 2 shows the first 5 iterations of the pattern search method applied to a typical minimiza-
tion problem. The algorithm starts with a finite initial step length. As the iterate approaches
the solution, the algorithm reduces the length of the steps (this turns out to be central to the
convergence analysis). Eventually, when the step length falls below a certain tolerance, the
algorithm is said to have converged and the search stops.

As this example demonstrates, an appealing characteristic of the pattern search method is
that it is simple and easy to implement and it only requires the ability to evaluate the function
at a point. A known disadvantage is that although the method may quickly decrease the initial
function value, it may be slow to detect a minimizer due to the convergence test being dependent
on reducing the step length below a certain threshold. Unfortunately, this is the price of not
explicitly using any derivative information.

2.1 The algorithm and convergence analysis

Several generalizations of the simple pattern search method have been proposed and discussed
previously, see for example [21, 23]. These methods fall under the general classification of gen-
erating set search (GSS) methods, which are categorized by using multiple search directions
computed from a generating set. One example from this class of methods is the generalized
pattern search (GPS) method [24]. This method, originally developed for unconstrained opti-
mization problems, has been extended by several authors to include general nonlinear constraints
and the use of mixed variables. This latter property in particular is essential to our use of the
algorithm for the LEED surface structure determination problem. In addition, the ability to
specify general constraints is useful, when one wishes to impose physical restrictions on possible
solutions, for example symmetry or realistic bond distances. For details about the GPS method
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for constrained optimization, see sections 7 and 8 of [21]. The GPS method for mixed variable
problems is described in more detail in [25].

Consider the following problem:

minimize f(x)

where x ∈ Rn, f : Rn → R (Rn denotes the n-dimensional real search space).
We define a generating set (positive spanning set), D, as a set of vectors whose nonnegative

linear combinations span Rn. For instance, a positive spanning set D for Rn could be

{e1, e2, · · · , en,−e1,−e2, · · · ,−en},

where ei is the i-th unit Cartesian vector in Rn. We note that this set must contain at least n+1
vectors to guarantee nonnegative linear combinations and hence need not be unique. The GPS
method will take steps through search space comparing function values at each of the points
defined by one of the search directions and step lengths. We will let ∆k be the step length
control parameter, and let ∆tol be the tolerance used to test for convergence. Assume that the
algorithm starts with an initial guess x0 that has a finite function value and an initial step length
∆0 > ∆tol. Then the GPS method can be described as follows:

Algorithm 1: Generalized Pattern Search
1: Choose generating set D, for example, let D = {e1, e2, · · · , en,−e1,−e2, · · · ,−en}
2: Choose ∆0

3: for k = 1, 2, . . . do
4: if there exists dk ∈ D such that f(xk + ∆kdk) < f(xk) then
5: Set xk+1 = xk + ∆kdk � update the iterate.
6: Set ∆k+1 = ∆k � no change to the step length control parameter
7: else
8: Set xk+1 = xk � f(xk + ∆kdk) ≥ f(xk) for all dk ∈ D; do not update the iterate
9: Set ∆k+1 = 1

2∆k � contract the step length control parameter
10: if ∆k+1 < ∆tol then
11: GPS algorithm has converged
12: end if
13: end if
14: end for

Each step of the GPS algorithm can be generalized even further. For example, in Step 1,
the lengths of the vectors in the generating set can take on any values between specified lower
and upper bounds; also, a finite number of additional search directions (other than the ones
already included in the generating set), may be added using heuristics or any other physics-based
approach that seems appropriate; for example, random search, a few generations of a genetic
algorithm, or Latin hypercube search. This adds an optional search step in each iteration of a
GPS algorithm. The search along the directions of the generating set is commonly referred to
as a local poll step. In Step 4, instead of requiring simple decrease of the function value, one
may instead require a larger decrease. Finally, different scale factors may be used to update the
step length control parameter ∆k, so that it is not always 1 in Step 6 and 1/2 in Step 9. These
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generalizations allow for great latitude in using the GPS method and can have a significant
impact on the efficiency of the algorithm.

One of the main advantages of the GPS method is that, although derivative information is
not explicitly used, the method can be shown to have strong convergence properties, which are
in many cases as good as for methods that require derivative information. This fact was not
fully appreciated until Torczon showed convergence of these algorithms under mild conditions
and Audet later proved that the convergence results could not be strengthened without adding
additional constraints [24]. The general outline of the proof can be shown to rely on satisfying
two conditions: the GPS algorithm needs to pick a descent direction, and the GPS algorithm
must avoid poor step lengths. The idea of the generating set enforces the first condition, and the
second condition is enforced through shortening the step length at unsuccessful iterates. The
surprising aspect of this class of algorithms is that convergence can be shown even though the
derivative of the function is never explicitly computed.

For our results, we have used a particular implementation of the GPS algorithm which is part
of a software package, NOMADm [26]. NOMADm is a MATLAB implementation of the class
of Mesh-Adaptive Direct Search (MADS) filter algorithms, which is a generalization of pattern
search, for numerically solving nonlinear and mixed variable optimization problems with general
nonlinear inequality constraints. Since it is not a straightforward task to generalize the concepts
of a direct search algorithm to categorical variables, many available implementations of GPS
methods (including both parallel and serial codes) are specifically designed for problems with
continuous variables only. By contrast, NOMADm allows categorical variables, which has a dis-
tinct advantage for our problem. Due to the difficulty posed by categorical variables, there are
no search or polling strategies suggested for categorical variables in NOMADm either; nonethe-
less it provides an interface from which user-defined strategies can be applied to the categorical
variables. In our results, for categorical variables, at each iteration we have used an optional
search step adapted from Latin hypercube search for continuous variables [26] and a “generating
set” adapted from the set {e1, e2, · · · , en,−e1,−e2, · · · ,−en} for continuous variables for a local
poll step.

3 LEED Surface Structure Determination Using GPS

Low-energy electron diffraction (LEED), in its most common application, is used in an iterative
procedure to predict surface structures. The LEED experiment is first simulated with a sophis-
ticated scattering model. For accuracy, the simulation must include multiple scattering, which
makes the computation expensive especially for complex structures. Since the computation can
only be performed with a set of given atomic positions and chemical identities, it is necessary
to start by guessing the structure and then iterating the search through the space of physically
realistic solutions.

The distinction between local and global optimization is important here. Efficient methods
of local optimization are available for LEED, as long as there are no categorical variables: for
example, tensor LEED [27], which provides local derivatives with respect to the continuous
variables (atomic coordinates). Tensor LEED can also assist with categorical variables (the
atomic identities) in a method sometimes called “chemical Tensor LEED” [28, 29] for surface
structures structurally close to a certain reference. By contrast, global optimization is much
more demanding. The larger challenge lies in solving the optimization problem in the presence
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of many other local minima. The LEED data itself does not provide much information to
determine where these other minima may be, so an exhaustive search (for both continuous and
categorical variables) would appear to be necessary resulting in a computationally expensive
solution. The present work focuses on the need to make such global optimization in LEED as
efficient as possible.

The main output from a LEED code is the mismatch between the simulation and the ex-
perimental data, which is encapsulated in a number called the R-factor [30]. In principle, the
R-factor is a continuous function of atomic positions, but it is discontinuous in terms of atomic
identities (one may also conveniently view a vacancy as just another atomic type, with vanishing
scattering strength). In practice, the functional dependence of the R-factor on the continuous
variables is not perfectly smooth, due to numerical discreteness in the experiment and compu-
tation (e.g. typical computations involve iterations which are interrupted at variable numbers
of iterations, giving discontinuous results, similarly, theory includes an adjustable energy shift
which often causes discontinuous changes of the end points of the energy range common with
experiment).

Fortunately, there are powerful methods that reduce the solution space to be searched and
therefore the required computing effort. One is symmetry: many surface structures turn out to
be symmetrical relative to rotation, mirror or glide operations. Symmetry helps in two major
ways: the computation can be considerably accelerated (sometimes by orders of magnitude) and
memory usage is reduced. At the same time, the dimensionality of the search space is greatly
reduced. For these reasons, such symmetry is extensively used in our LEED codes [31].

The other computational savings come from imposing “realism” on the search space. At a
simple level, one can impose upper and lower bounds on the interatomic distances (bond lengths)
and on the coordination numbers (numbers of nearest neighbors). This is commonly done in
organic crystallography with x-ray diffraction, but rare for the remainder of the periodic table,
because the rules for realism depend strongly on the nature of interatomic bonding, which varies
greatly among pairs of elements. In particular, this constraining of the search has not yet been
applied with LEED, except in preliminary explorations with genetic algorithms [13]. On the
other hand, it has been almost universal in LEED studies to sharply constrain the chemical
elements: usually the experimenter knows which elements are present (although not necessarily
where), so this can be justified.

Our intent was thus to investigate the applicability and performance of a generalized pattern
search method for determining the surface structure of materials with LEED. In our calculations,
we used the Symmetrized Automated Tensor LEED package [31] to calculate the R-factor, and
used the package NOMADm [26] for the pattern search methods as mentioned in Section 2. As in
Ref. [13], we applied the same set of necessary constraints to the search, and the structures that
don’t satisfy these constraints (invalid structures) were assigned a big R-factor (e.g., 1.6). The
atomic positions can be expected to be obtained with an accuracy better than 0.1Å = 0.01nm,
based on experience with extended surfaces [4].

4 Numerical Results and Discussion

We applied the GPS method to the complex surface formed by adding lithium (Li) atoms on a
nickel (Ni) crystal surface with (001) crystallographic orientation, and a (5x5) superlattice; it
is commonly labeled as Ni(001)-(5x5)-Li. This structure was analyzed by LEED with only the
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benefit of local optimization as provided by tensor LEED [27]. To perform the global search, the
authors of that analysis conceived of 45 different structural models from physical information
for this surface (such as symmetry, bond lengths and density of the Li layer). Each model was
locally optimized by tensor LEED; the best-fit model has the lowest R-factor value 0.24 (see
Fig. 3). We refer to this structure henceforth as the best known structure for this surface.
This structure can be viewed as having a pure nickel substrate, covered with three overlayers,
which have, in each (5x5) unit cell, 25 Ni atoms in the innermost overlayer, 16 Ni and 8 Li in
the middle overlayer, and 9 Li atoms in the outermost overlayer. The superlattice cell has a
size of about 12.5Å × 12.5Å, and the three layers have a combined thickness (in the assumed
models) of about 5Å. If the full point group symmetry of the Ni (001) substrate (namely p4m)
is imposed, there are 14 inequivalent atoms in the cell (for example, those atoms located within
one octant). Therefore, to determine the structure of this surface, we need only the coordinates
of these 14 atoms as well as their chemical identities. Correspondingly, the optimization problem
has 3 × 14 = 42 continuous variables with a parameter space volume of 12.5Å × 12.5Å × 5Å
and 14 categorical variables (each atom can be either Ni or Li). There is one non-structural
parameter–an adjustable “muffin-tin zero” energy shift due to an unknown energy zero in the
theory relative to experiment, and the R-factor is an optimal value also with respect to this
energy shift. We did not count it as an optimization variable here, since this optimization is
done inside the TLEED code, uncontrolled by the GPS code. To easily permit other models in
this scheme one could allow the categorical variables to also represent a vacancy, so that the
number of atoms can vary, but this was not done in this investigation.

To compare the performance of the GPS method to that of GAs, we performed similar
calculations on this test problem using both approaches. As mentioned in the introduction,
due to the large number of invalid (i.e. physically unrealistic) structures produced, only small
atomic relaxations (±0.4Å) from the best known solution were allowed in the search with GAs.
Fig. 4 illustrates the performance of the GAs: the horizontal axis shows the number of function
evaluations, while the vertical axis shows the R-factor. In this example, the atomic types
(chemical identities) are fixed to those of the best known structure. Since the initial guesses
for the atomic positions were restricted within ±0.4Å from the best known atomic positions,
this example actually represents near-local rather than global optimization. The best known
structure was found at around 2400 function evaluations.

The same calculation as in Fig. 4 was performed by the GPS method,with results shown
in Fig. 5. From these two figures, we can see that GPS requires fewer function calls to locate
an optimal solution. GPS found an improved solution (R-factor=0.12) at around 600 function
evaluations, while the GA found the best known solution (R-factor=0.24) already at around
2400 function evaluations. Another observation from the figures is that GPS generates far fewer
invalid structure than the GA. The first 1000 trial structures produced by GA were all invalid,
and after the first valid trial structure was found, a large fraction of the trial structures remained
invalid. By contrast, the first 100 trial structures generated by GPS were all invalid, but once a
valid structure was found, GPS generated an increasingly large fraction of valid structures until
no more invalid structures were produced.

In our next test, we kept the atomic positions (42 continuous variables) fixed, only allowing
the chemical identities (categorical variables) to change. Fig. 6 and Fig. 7 show results by
GA and GPS, respectively. Both methods started from the same initial guess of the categorical
variables, labeled as 11111122211122; in this notation each of the 14 adjustable atoms is listed as
having chemical type 1 for Li or 2 for Ni, with the atoms listed in some predefined but arbitrary
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order. From these two figures, we see that GA needs 280 function evaluations to obtain the best
known solution 11111222222222, while GPS needs only 49 function evaluations; moreover, GPS
found an improved solution at 135 function evaluations. Again, we see that in these tests GPS
requires far fewer function evaluations than GA. It should be noted for completeness, however,
that the improved structure found by GPS with the R-factor near 0.12 is actually also invalid,
as it is found to have an unphysically large shift of the energy zero; this nonetheless does not
reflect negatively on the GPS method, but points to the need for better limits on the allowable
range of this variable.

To test the robustness of the GPS method, we ran the same search as above with 20 different
randomly chosen initial guesses: Fig. 8 shows the results of all 20 trials. We see that the GPS
method is very robust: all 20 runs reached the same minimum R-factor of 0.1184 with an average
of 152 function evaluations.

To be used as a global optimizer in the LEED surface structure determination problem, one
of the key requirements of the method is the ability to simultaneously relax both the continuous
and categorical variables; another requirement, of course, is the ability to relax atomic positions
globally (not just locally), so the search for the optimum really explores the whole parameter
space. Fig. 9 shows that GPS allows relaxing both kinds of variables simultaneously. In this
calculation, we started with the best known atomic positions with a random displacements with
a window size ±0.4Å and a random guess of the chemical identities, and we completely relaxed
atoms in the xy plane, while we kept only the layer constraints in the z direction (this limitation
was chosen mainly for the sake of simplicity of programming; there is no difficulty in principle
to remove this constraint). We can see from Fig. 9 that after 650 function calls both the best
known categorical and continuous variables were found. Further searching found an improved
solution with R-factor=0.2275 at around 660 function calls.

5 Conclusions

The generalized pattern search (GPS) method has been applied to the surface structure deter-
mination of the complex structure Ni(001)-(5x5)-Li by low energy electron diffraction (LEED).
Our evaluation shows that the GPS method exhibits a better performance than the previously
used genetic algorithm (GA) in terms of efficiency and ability to locate the optimal solutions, at
least for the relatively local search that the earlier GA tests were limited to. In addition, GPS
produces far fewer invalid (i.e. unphysical) structures and requires far fewer function evaluations
than GA.

We were also able to demonstrate that the GPS method is robust and allows complete
relaxation of the atomic positions, as required for global optimization. Moreover, it allows
simultaneously relaxing both the atomic positions and atomic types (chemical identities). We
also found solutions with a better fit over the previously best known solution (even though
the energy zero shift of one of the solutions is unrealistic for reasons unrelated to GPS). Our
evaluation shows that GPS optimization methods are promising candidates for LEED surface
structure determination.

It is clear that for GPS, as for other optimization methods, a validity test would be very useful
to further reduce the time-consuming calculation of unphysical structures generated during the
optimization process. Such a test could include limits on interatomic distances and angles, as
well as on the unknown energy zero shift between theory and experiment. It could even, in a
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more sophisticated approach, include the total energy of the system, since that energy must also
be a minimum for the correct solution. These are all subjects for future research.
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Figure 1: A typical LEED experiment set-up (a) and a typical LEED pattern (b).
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Figure 2: First 5 iterations of the pattern search method applied to a 2-dimensional optimization
problem (Broyden tridiagonal function [22]). The gray lines in the background are level sets,
and the solution to the problem is marked with a star. In each panel, the center dot denotes
the current iterate, and the 4 surrounding dots represent the trial points under consideration
at that iteration; the trial points from the previous iteration are shown in dotted circles for
comparison. The algorithm starts with a certain step length; when the iterate approaches the
solution, the algorithm reduces the length of the steps taken; when the step length falls below
a certain tolerance, the algorithm stops. This example is from Ref. [21].
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Figure 3: The surface formed by adding lithium atoms on a nickel surface. The 45 small panels
on the left are structure models built to fit LEED experimental intensities from physical intuition
(each model was locally optimized by tensor LEED). The 4 panels on the right detail structure
model 31 (panels (c) and (d) represent two separate layers), which has the lowest R-factor among
these models: we label it the “best known solution” (Courtesy of Dr. S. Mizuno) [17].
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Figure 4: A GA result of continuous variable search following Ref. [13]. Only the continuous
variables are relaxed; the categorical variables are fixed at the best known chemical identities.
The best known structure was found after about 2400 function calls. Note: the relaxation of
the atoms was constrained to be ±0.4Å from the best known atomic positions.
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Figure 5: As Fig. 4, but using GPS, which generates fewer invalid structures than GA. At 591
function evaluations the improved solution was found (R-factor=0.12).
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Figure 6: A GA result of chemical identity search following Ref. [13]. Only the categorical
variables are relaxed; continuous variables are fixed at the best known atomic positions. The
best known solution was found at 280 function evaluations. Note that the number of function
evaluations in GAs is the product of the number of generations and the population size (10).
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Figure 7: As Fig. 6, but using GPS, which requires fewer function evaluations than GA. At the
49th function call, the best known solution was found; at the 135th function call, an improved
solution with R-factor=0.1184 was found.
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Figure 8: Same GPS search as in Fig. 7, with 20 different randomly chosen initial guesses. This
shows that GPS is robust. All 20 runs of the chemical identity search reached the same minimum
R-factor.
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Figure 9: A GPS run starting with the best known atomic positions with random displacements,
with a window size of ±0.4Å and a random guess of the chemical identities, allowing relaxations
of both types of variables: complete relaxation of atomic positions in the in-plane x and y direc-
tions, and layer constraints in the z direction. An improved solution with an R-factor=0.2275
was found.
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